Государственное бюджетное общеобразовательное учреждение Самарской области средняя общеобразовательная школа с. Екатериновка муниципального района Приволжский Самарской области

Рассмотрена на заседании школьного методического объединения и рекомендована к утверждению

«Утверждаю»

Директор ГБОУ СОШ с. Екатериновка

(протокол № 1 от 04.09.2020 г.)

Измайлова Е.Н. Измайлова

Приказ № 41/3 от 07. 09. 2020 г

РАБОЧАЯ ПРОГРАММА

учебного предмета (курса, внеурочной деятельности)

Химия

для 8-9 классов

«Проверена»

Заместитель директора по УВР

__ (Тимина С.В.)

04.09. 2020 г.

2020 год

Рабочая программа с изменениями и дополнениями, проверенными заместителем директора по УВР 28.10.2020~г., рассмотренными на заседании школьного методического объединения (протокол №2 от 28.10.2020~г.), утвержденными приказом № 48/1~ от 29.10.2020~г.

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа по химии в 8-9 классах разработана в соответствии с:

- Федеральным законом от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации» (с изменениями и дополнениями);
- ФГОС ООО, утвержденным приказом министерства образования и науки РФ № 1897 от 17.12.2010 г. (с изменениями и дополнениями);
- ООП ООО ГБОУ СОШ с Екатериновка, утвержденной приказом № 66/12 от 29.08.2017г (с изменениями и дополнениями);
- Положением о Рабочей программе ГБОУ СОШ с. Екатериновка, утвержденным приказом № 4/1 от 8.02.2018 г. (с изменениями и дополнениями)
- Программой О.С. Габриеляна: Программа основного общего образования по химии для 8-9 классов/ О.С.Габриелян. М.: Дрофа,2016г.
- Учебниками: Химия 8 класс/О.С. Габриелян.- М: Дрофа, 2019 Химия 9 класс/О.С. Габриелян.- М: Дрофа, 2018

В учебном плане на освоение учебного предмета «Химия» на уровне основного общего образования отводится: 68 часов – 8 класс, 68 часов – 9 класс.

В связи с продлением осенних каникул 2020-2021 учебного года на одну неделю по причине пандемии по короновирусной инфекции уменьшено количество часов на изучении предмета химии в 8, 9 классах - на 2 часа без изменения содержания программы (66 часов 6 год 6 6 классе, 66 часов 6 6 классе) (приказ 8 8 классе) (приказ 8 8 классе) (приказ 8 8 классе)

Цели реализации программы: достижение обучающимися результатов изучения учебного предмета «Химия» в соответствии с требованиями, утвержденными Федеральным государственным образовательным стандартом основного общего образования.

Задачами реализации программы учебного предмета являются:

- формирование первоначальных систематизированных представлений о веществах, их превращениях и практическом применении; овладение понятийным аппаратом и символическим языком химии;
- осознание объективной значимости основ химической науки как области современного естествознания, химических превращений неорганических и органических веществ как основы многих явлений живой и неживой природы; углубление представлений о материальном единстве мира;
- овладение основами химической грамотности: способностью анализировать и объективно оценивать жизненные ситуации, связанные с химией, навыками безопасного обращения с

- веществами, используемыми в повседневной жизни; умением анализировать и планировать экологически безопасное поведение в целях сохранения здоровья и окружающей среды;
- формирование умений устанавливать связи между реально наблюдаемыми химическими явлениями и процессами, происходящими в микромире, объяснять причины многообразия веществ, зависимость их свойств от состава и строения, а также зависимость применения веществ от их свойств;
- приобретение опыта использования различных методов изучения веществ: наблюдения за проведении ИΧ превращениями при несложных химических экспериментов использованием лабораторного оборудования и приборов;
- формирование представлений о значении химической науки в решении современных экологических проблем, в том числе в предотвращении техногенных и экологических катастроф.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ УЧЕБНОГО ПРЕДМЕТА

Выпускник научится: Выпускник получит возможность научиться: Основные понятия химии (уровень атомно-молекулярных представлений)

• описывать свойства твёрдых, жидких, газообразных

- веществ, выделяя их существенные признаки;
- характеризовать вещества по составу, строению и свойствам, устанавливать причинно-следственные связи между данными характеристиками вещества;
- раскрывать смысл основных химических понятий «молекула», «химический элемент», «простое вещество», «сложное вещество», «валентность», используя знаковую систему химии;
- изображать состав простейших веществ с помощью химических формул и сущность химических реакций с помощью химических уравнений;
- вычислять относительную молекулярную и молярную массы веществ, а также массовую долю химического элемента в соединениях для оценки их практической значимости;
- сравнивать по составу оксиды, основания, кислоты, соли;
- классифицировать оксиды и основания по свойствам, кислоты и соли по составу;
- описывать состав, свойства и значение (в природе и практической деятельности человека) простых веществ кислорода и водорода;
- давать сравнительную характеристику химических элементов и важнейших соединений естественных семейств щелочных металлов и галогенов;
- пользоваться лабораторным оборудованием химической посудой;

- грамотно обращаться веществами в повседневной жизни;
- осознавать необходимость соблюдения правил экологически безопасного поведения окружающей природной среде;
- понимать смысл необходимость соблюдения предписаний, предлагаемых инструкциях по использованию лекарств, средств бытовой химии и др.;
- использовать приобретённые ключевые компетентности при исследовательских выполнении проектов по изучению свойств, способов получения распознавания веществ;
- развивать коммуникативную компетентность, используя средства устной и письменной коммуникации при работе текстами учебника дополнительной литературой, справочными таблицами, проявлять готовность к уважению иной точки зрения при обсуждении результатов выполненной работы;

- проводить несложные химические опыты и наблюдения за изменениями свойств веществ в процессе их превращений; соблюдать правила техники безопасности при проведении наблюдений и опытов;
- различать экспериментально кислоты и щёлочи, пользуясь индикаторами; осознавать необходимость соблюдения мер безопасности при обращении с кислотами и шелочами.
- объективно оценивать информацию о веществах и химических процессах, критически относиться к псевдонаучной информации, недобросовестной рекламе, касающейся использования различных веществ.

Периодический закон и периодическая система химических элементов Д. И. Менделеева. Строение вещества

- классифицировать химические элементы на металлы, неметаллы, элементы, оксиды и гидроксиды которых амфотерны, и инертные элементы (газы) для осознания важности упорядоченности научных знаний;
- раскрывать смысл периодического закона Д. И. Менделеева;
- описывать и характеризовать табличную форму периодической системы химических элементов;
- характеризовать состав атомных ядер и распределение числа электронов по электронным слоям атомов химических элементов малых периодов периодической системы, а также калия и кальция:
- различать виды химической связи: ионную, ковалентную полярную, ковалентную неполярную и металлическую;
- изображать электронно-ионные формулы веществ, образованных химическими связями разного вида;
- выявлять зависимость свойств веществ от строения их кристаллических решёток: ионных, атомных, молекулярных, металлических;
- характеризовать химические элементы и их соединения на основе положения элементов в периодической системе и особенностей строения их атомов;
- описывать основные этапы открытия Д. И. Менделеевым периодического закона и периодической системы химических элементов, жизнь и многообразную научную деятельность учёного;
- характеризовать научное и мировоззренческое значение периодического закона и периодической системы химических элементов Д. И. Менделеева;
- осознавать научные открытия как результат длительных наблюдений, опытов, научной полемики, преодоления трудностей и сомнений.

- осознавать значение теоретических знаний для практической деятельности человека;
- описывать изученные объекты как системы, применяя логику системного анализа;
- применять знания о закономерностях периодической системы химических элементов для объяснения и предвидения свойств конкретных веществ;
- развивать информационную компетентность посредством углубления знаний об истории становления химической науки, её основных понятий, периодического закона как одного из важнейших законов природы, а также о современных достижениях науки и техники.

Многообразие химических реакций

- объяснять суть химических процессов и их принципиальное отличие от физических;
- называть признаки и условия протекания химических реакций;
- устанавливать принадлежность химической реакции к определённому типу по одному из классификационных
- составлять молекулярные и полные ионные уравнения по сокращённым ионным уравнениям;
- приводить примеры реакций, подтверждающих существование взаимосвязи между основными

признаков: 1) по числу и составу исходных веществ и продуктов реакции (реакции соединения, разложения, замещения и обмена); 2) по выделению или поглощению теплоты (реакции экзотермические и эндотермические); 3) по изменению степеней окисления химических элементов (реакции окислительно-восстановительные); 4) по обратимости процесса (реакции обратимые и необратимые);

- называть факторы, влияющие на скорость химических реакций;
- называть факторы, влияющие на смещение химического равновесия;
- составлять уравнения электролитической диссоциации кислот, щелочей, солей; полные и сокращённые ионные уравнения реакций обмена; уравнения окислительновосстановительных реакций;
- прогнозировать продукты химических реакций по формулам/названиям исходных веществ; определять исходные вещества по формулам/названиям продуктов реакции;
- составлять уравнения реакций, соответствующих последовательности («цепочке») превращений неорганических веществ различных классов;
- выявлять в процессе эксперимента признаки, свидетельствующие о протекании химической реакции;
- приготовлять растворы с определённой массовой долей растворённого вещества;
- определять характер среды водных растворов кислот и щелочей по изменению окраски индикаторов;
- проводить качественные реакции, подтверждающие наличие в водных растворах веществ отдельных катионов и анионов.

классами неорганических веществ;

- прогнозировать результаты воздействия различных факторов на изменение скорости химической реакиии;
- прогнозировать результаты воздействия различных факторов на смещение химического равновесия.

Многообразие веществ

- определять принадлежность неорганических веществ к одному из изученных классов/групп: металлы и неметаллы, оксиды, основания, кислоты, соли;
 - составлять формулы веществ по их названиям;
- определять валентность и степень окисления элементов в веществах;
- составлять формулы неорганических соединений по валентностям и степеням окисления элементов, а также зарядам ионов, указанным в таблице растворимости кислот, оснований и солей;
- объяснять закономерности изменения физических и химических свойств простых веществ (металлов и неметаллов) и их высших оксидов, образованных элементами второго и третьего периодов;
- называть общие химические свойства, характерные для групп оксидов: кислотных, основных, амфотерных;
- называть общие химические свойства, характерные для каждого из классов неорганических веществ: кислот, оснований, солей;
 - приводить примеры реакций, подтверждающих

- прогнозировать химические свойства веществ на основе их состава и строения;
- прогнозировать способность вещества проявлять окислительные или восстановительные свойства с учётом степеней окисления элементов, входящих в его состав;
- выявлять существование генетической взаимосвязи между веществами в ряду: простое вещество оксид гидроксид соль;
- характеризовать особые свойства концентрированных серной и азотной кислот;
- приводить примеры уравнений реакций, лежащих в основе промышленных способов

химические свойства неорганических веществ: оксидов, кислот, оснований и солей;

- определять вещество-окислитель и вещество-восстановитель в окислительно-восстановительных реакциях;
- составлять окислительно-восстановительный баланс (для изученных реакций) по предложенным схемам реакций;
- проводить лабораторные опыты, подтверждающие химические свойства основных классов неорганических вешеств:
- проводить лабораторные опыты по получению и собиранию газообразных веществ: водорода, кислорода, углекислого газа, аммиака; составлять уравнения соответствующих реакций.

получения аммиака, серной кислоты, чугуна и стали;

- описывать физические и химические процессы, являющиеся частью круговорота веществ в природе;
- организовывать, проводить ученические проекты по исследованию свойств веществ, имеющих важное практическое значение.

СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА

8 класс (2 ч в неделю)

Введение (4 ч)

Предмет химии. Вещества. Превращения веществ. Роль химии в жизни человека. Краткие сведения по истории развития химии. Основоположники отечественной химии. Знаки (символы) химических элементов. Таблица Д. И. Менделеева. Химические формулы. Относительная атомная и молекулярная массы. Массовая доля элемента в соединении

Демонстрации. 1. Модели (шаростержневые) различных простых и сложных веществ. 2. Коллекция стеклянной химической посуды. 3. Коллекция материалов и изделий из них на основе алюминия. 4. Взаимодействие мрамора с кислотой и помутнение известковой воды.

Лабораторные опыты.

- 1. Сравнение свойств твердых кристаллических веществ и растворов.
- 2. Сравнение скорости испарения воды, одеколона и этилового спирта с фильтровальной бумаги.

Предметные результаты обучения

- использовать при характеристике веществ понятия: «атом», «молекула», «химический элемент», «химический знак, или символ», «вещество», «простое вещество», «сложное вещество», «свойства веществ», «химические явления», «физические явления», «коэффициенты», «индексы», «относительная атомная масса», «относительная молекулярная масса», «массовая доля элемента»;
- знать: предметы изучения естественнонаучных дисциплин, в том числе химии; химические символы: Al, Ag, C, Ca, C1, Cu, Fe, H, K, N, Mg, Na, O, P, S, Si, Zn, их названия и произношение; классифицировать вещества по составу на простые и сложные; различать: тела и вещества; химический элемент и простое вещество;
- описывать: формы существования химических элементов (свободные атомы, простые вещества, сложные вещества); табличную форму Периодической системы химических элементов; положение элемента в таблице Д. И. Менделеева, используя понятия «период», «группа», «главная подгруппа», «побочная подгруппа»; свойства веществ (твердых, жидких, газообразных);
- объяснять сущность химических явлений (с точки зрения атомно-молекулярного учения) и их принципиальное отличие от физических явлений;
- характеризовать: основные методы изучения естественных дисциплин (наблюдение, эксперимент, моделирование); вещество по его химической формуле согласно плану: качественный состав, тип вещества (простое или сложное), количественный состав, относительная молекулярная масса, соотношение масс элементов в веществе, массовые доли элементов в веществе (для сложных веществ); роль химии (положительную и отрицательную) в жизни человека, аргументировать свое отношение к этой проблеме;
- вычислять относительную молекулярную массу вещества и массовую долю химического элемента в

соединениях;

- проводить наблюдения свойств веществ и явлений, происходящих с веществами;
- соблюдать правила техники безопасности при проведении наблюдений и лабораторных опытов.

Метапредметные результаты обучения

Учащийся должен уметь:

- определять проблемы, т. е. устанавливать несоответствие между желаемым и действительным;
- составлять сложный план текста:
- владеть таким видом изложения текста, как повествование; под руководством учителя проводить непосредственное наблюдение;
- под руководством учителя оформлять отчет, включающий описание наблюдения, его результатов, выводов;
- использовать такой вид мысленного (идеального) моделирования, как знаковое моделирование (на примере знаков химических элементов, химических формул);
- использовать такой вид материального (предметного) моделирования, как физическое моделирование (на примере моделирования атомов и молекул);
- получать химическую информацию из различных источников; определять объект и аспект анализа и синтеза; определять компоненты объекта в соответствии с аспектом анализа и синтеза;
- осуществлять качественное и количественное описание компонентов объекта;
- определять отношения объекта с другими объектами; определять существенные признаки объекта.

Тема 1. Атомы химических элементов (9 ч)

Основные сведения о строении атомов. Состав атомных ядер: протоны и нейтроны. Изотопы Электроны. Строение электронных оболочек атомов элементов \mathbb{N} 1 — 20 в таблице Д. И. Менделеева. Металлические и неметаллические свойства элементов. Изменение свойств химических элементов по группам и периодам. Ионная химическая связь. Ковалентная неполярная химическая связь. Электроотрицательность. Ковалентная полярная химическая. Металлическая химическая связь. Контрольная работа \mathbb{N} 1 «Атомы химических элементов»

Демонстрации.

5. Модели атомов химических элементов.

6.Периодическая система химических элементов Д. И. Менделеева (различные формы).

Лабораторные опыты. 3. Моделирование принципа действия сканирующего микроскопа. 4. Изготовление модели, иллюстрирующей свойства металлической связи.

Предметные результаты обучения

- использовать при характеристике атомов понятия: «протон», «нейтрон», «электрон», «химический элемент», «массовое число», «изотоп», «электронный слой», «энергетический уровень», «элементыметаллы», «элементы-неметаллы»; при характеристике веществ понятия «ионная связь», «ионы», «ковалентная неполярная связь», «ковалентная полярная связь», «электроотрицательность», «валентность», «металлическая связь»;
- описывать состав и строение атомов элементов с порядковыми номерами 1—20 в Периодической системе химических элементов Д. И. Менделеева;
- составлять схемы распределения электронов по электронным слоям в электронной оболочке атомов; схемы образования разных типов химической связи (ионной, ковалентной, металлической);
- объяснять закономерности изменения свойств химических элементов (зарядов ядер атомов, числа электронов на внешнем электронном слое, число заполняемых электронных слоев, радиус атома, электроотрицательность, металлические и неметаллические свойства) в периодах и группах (главных подгруппах) Периодической системы химических элементов Д. И. Менделеева с точки зрения теории строения атома;
- сравнивать свойства атомов химических элементов, находящихся в одном периоде или главной подгруппе Периодической системы химических элементов Д. И. Менделеева (зарядов ядер атомов, числа электронов на внешнем электронном слое, число заполняемых электронных слоев, радиус атома, электроотрицательность, металлические и неметаллические свойства);
- давать характеристику химических элементов по их положению в Периодической системе химических элементов Д. И. Менделеева (химический знак, порядковый номер, период, группа, подгруппа, относительная атомная масса, строение атома заряд ядра, число протонов и нейтронов в ядре, общее число электронов, распределение электронов по электронным слоям);

- определять тип химической связи по формуле вещества; приводить примеры веществ с разными типами химической связи;
- характеризовать механизмы образования ковалентной связи (обменный), ионной связи, металлической связи;
- устанавливать причинно-следственные связи: состав вещества тип химической связи;
- составлять формулы бинарных соединений по валентности;
- находить валентность элементов по формуле бинарного соединения.

Метапредметные результаты обучения

Учащийся должен уметы.

- формулировать гипотезу по решению проблем; составлять план выполнения учебной задачи, решения проблем творческого и поискового характера, выполнения проекта совместно с учителем;
- составлять тезисы текста;
- владеть таким видом изложения текста, как описание; использовать такой вид мысленного (идеального) моделирования, как знаковое моделирование (на примере составления схем образования химической связи);
- использовать такой вид материального (предметного) моделирования, как аналоговое моделирование;
- использовать такой вид материального (предметного) моделирования, как физическое моделирование (на примере моделей строения атомов);
- определять объекты сравнения и аспект сравнения объектов; выполнять неполное однолинейное сравнение;
- выполнять неполное комплексное сравнение; выполнять полное однолинейное сравнение.

Тема 2. Простые вещества (6 ч)

Простые вещества-металлы Простые вещества-неметаллы, их сравнение с металлами. Аллотропия. Количество вещества. Молярный объем газообразных веществ. Решение задач с использованием понятий «количество вещества», «постоянная Авогадро», «молярная масса», «молярный объем газов»

Контрольная работа №2 «Простые вещества».

Демонстрации.

- 7. Получение озона.
- 8. Образцы белого и серого олова, белого и красного фосфора.
- 9. Некоторые металлы и неметаллы с количеством вещества 1 моль. Молярный объем газообразных веществ.

Лабораторные опыты.

- 6. Ознакомление с коллекцией металлов.
- 7. Ознакомление с коллекцией неметаллов.

Предметные результаты обучения

- использовать при характеристике веществ понятия: «металлы», «пластичность», «теплопроводность», «электропроводность», «неметаллы», «аллотропия», «аллотропные видоизменения, или модификации»;
- описывать положение элементов-металлов и элементов- неметаллов в Периодической системе химических элементов Д. И. Менделеева;
- классифицировать простые вещества на металлы и неметаллы, элементы;
- определять принадлежность неорганических веществ к одному из изученных классов металлы и неметаллы;
- доказывать относительность деления простых веществ на металлы и неметаллы;
- характеризовать общие физические свойства металлов; устанавливать причинно-следственные связи между строением атома и химической связью в простых веществах металлах и неметаллах;
- объяснять многообразие простых веществ таким фактором, как аллотропия;
- описывать свойства веществ (на примерах простых веществ —- металлов и неметаллов);
- соблюдать правила техники безопасности при проведении наблюдений и лабораторных опытов;
- использовать при решении расчетных задач понятия: «количество вещества», «моль», «постоянная Авогадро», «молярная масса», «молярный объем газов», «нормальные условия»;
- проводить расчеты с использованием понятий: «количество вещества», «молярная масса», «молярный объем газов», «постоянная Авогадро».

Метапредметные результаты обучения

Учащийся должен уметь:

- составлять конспект текста;
- самостоятельно использовать непосредственное наблюдение; самостоятельно оформлять отчет, включающий описание наблюдения, его результатов, выводов;
- выполнять полное комплексное сравнение; выполнять сравнение по аналогии.

Тема 3. Соединения химических элементов (14ч)

Степень окисления. Основы номенклатуры бинарных соединений. Оксиды Основания. Кислоты. Соли как производные кислот и оснований. . Аморфные и кристаллические вещества. Чистые вещества и смеси. Массовая и объемная доли компонентов в смеси. Расчеты, связанные с понятием «доля». Обобщение и систематизация знаний по теме «Соединения химических элементов»

Контрольная работа №3 «Соединения химических элементов»

Демонстрации.

- 1. Образцы оксидов, кислот, оснований и солей.
- 2. Модели кристаллических решеток хлорида натрия, алмаза, оксида углерода (IV).
- 3. Кислотно-щелочные индикаторы, изменение их окраски в различных средах.
- 4. Универсальный индикатор и изменение его окраски в различных средах.
- 5. Шкала рН.

Лабораторные опыты.

- 8. Ознакомление с коллекцией оксидов.
- 9. Ознакомление со свойствами аммиака.
- 10. Качественная реакция на углекислый газ.
- 11. Определение рН растворов кислоты, щелочи и воды.
- 12. Определение рН лимонного и яблочного соков на срезе плодов.
- 13. Ознакомление с коллекцией солей.
- 14. Ознакомление с коллекцией веществ с разным типом кристаллической решетки. Изготовление моделей кристаллических решеток.
- 15. Ознакомление с образцом горной породы.

Предметные результаты обучения

- использовать при характеристике веществ понятия: «степень окисления», «валентность», «оксиды», «основания», «щелочи», «качественная реакция», «индикатор», «кислоты», «кислородсодержащие кислоты», «бескислородные кислоты», «кислотная среда», «щелочная среда», «нейтральная среда», «шкала рН», «соли», «аморфные вещества», «кристаллические вещества», «кристаллическая решетка», «молекулярная кристаллическая решетка», «металлическая кристаллическая решетка», «смеси»;
- классифицировать сложные неорганические вещества по составу на оксиды, основания, кислоты и соли; основания, кислоты и соли по растворимости в воде; кислоты по основности и содержанию кислорода;
- определять принадлежность неорганических веществ к одному из изученных классов (оксиды, летучие водородные соединения, основания, кислоты, соли) по формуле;
- описывать свойства отдельных представителей оксидов (на примере воды, углекислого газа, негашеной извести), летучих водородных соединений (на примере хлороводорода и аммиака), оснований (на примере гидроксидов натрия, калия и кальция), кислот (на примере серной кислоты) и солей (на примере хлорид натрия, карбоната кальция, фосфата кальция);
- определять валентность и степень окисления элементов в веществах;
- составлять формулы оксидов, оснований, кислот и солей по валентностям и степеням окисления элементов, а также зарядам ионов, указанным в таблице растворимости кислот, оснований и солей;
- составлять названия оксидов, оснований, кислот и солей; сравнивать валентность и степень окисления; оксиды, основания, кислоты и соли по составу;
- использовать таблицу растворимости для определения растворимости веществ;
- устанавливать генетическую связь между оксидом и гидроксидом и наоборот; причинноследственные связи между строением атома, химической связью и типом кристаллической решетки химических соединений;
- характеризовать атомные, молекулярные, ионные металлические кристаллические решетки; среду

раствора с помощью шкалы рН;

- приводить примеры веществ с разными типами кристаллической решетки;
- проводить наблюдения за свойствами веществ и явлениями, происходящими с веществами;
- соблюдать правила техники безопасности при проведении наблюдений и опытов;
- исследовать среду раствора с помощью индикаторов; экспериментально различать кислоты и щелочи, пользуясь индикаторами;
- использовать при решении расчетных задач понятия «массо- иая доля элемента в веществе», «массовая доля растворенного вещества», «объемная доля газообразного вещества»;
- проводить расчеты с использованием понятий «массовая доля элемента в веществе», «массовая доля растворенного вещества», «объемная доля газообразного вещества».

Метапредметные результаты обучения

- Учащийся должен уметь:
- составлять на основе текста таблицы, в том числе с применением средств И КТ;
- под руководством учителя проводить опосредованное наблюдение;
- под руководством учителя оформлять отчет, включающий описание эксперимента, его результатов, выводов;
- осуществлять индуктивное обобщение (от единичного достоверного к общему вероятностному), т. е. определять общие существенные признаки двух и более объектов и фиксировать их в форме понятия или суждения;
- осуществлять дедуктивное обобщение (подведение единичного достоверного под общее достоверное), т. е. актуализировать понятие или суждение, и отождествлять с ним соответствующие существенные признаки одного или более объектов; определять аспект классификации; осуществлять классификацию;
- знать и использовать различные формы представления классификации.

Тема 4. Изменения, происходящие с веществами (12 ч)

Физические явления. Разделение смесей. Химические явления. Условия и признаки протекания химических реакций. Закон сохранения массы веществ. Химические уравнения. Расчеты по химическим уравнениям. Реакции разложения. Понятие о скорости химической реакции и катализаторах.

Реакции соединения. Цепочки переходов. Реакции замещения. Ряд активности металлов.

Реакции обмена. Правило Бертолле. Типы химических реакций на примере свойств воды. Понятие о гидролизе. Контрольная работа № 4 «Изменения, происходящие с веществами» Демонстрации.

- - 6. Примеры физических явлений: а) плавление парафина; б) возгонка йода или бензойной кислоты; в) растворение окрашенных солей; г) диффузия душистых веществ с горящей лампочки накаливания.
 - 7. Примеры химических явлений: II) горение магния, фосфора; б) взаимодействие соляной кислоты с мрамором или мелом; в) получение гидроксида меди (II);

I) растворение полученного гидроксида в кислотах; д) взаимодействие оксида меди (II) с серной кислотой при нагревании; с) разложение перманганата калия; ж) разложение пероксида водорода с помощью диоксида марганца и каталазы картофеля или моркови; з) взаимодействие разбавленных кислот с металлами.

Лабораторные опыты.

- 16. Прокаливание меди в пламени спиртовки.
- 17. Замещение меди в растворе хлорида меди (II) железом.

Предметные результаты обучения

- использовать при характеристике веществ понятия: «дистилляция», «перегонка», «кристаллизация», «выпаривание», «фильтрование», «возгонка, или сублимация», «отстаивание», рифугирование», «химическая реакция», «химическое уравнение», «реакции соединения», «реакции разложения», «реакции обмена», «реакции замещения», «реакции нейтрализации», экзотермические реакции», «эндотермические реакции», «реакции горения», «катализаторы», «ферменты», «обратимые реакции», «необратимые реакции», «каталитические реакции», некаталитические реакции», «ряд активности металлов», «гидролиз»;
- устанавливать причинно-следственные связи между физическими свойствами веществ и способом

разделения смесей;

- объяснять закон сохранения массы веществ с точки зрения атомно-молекулярного учения;
- составлять уравнения химических реакций на основе закона сохранения массы веществ;
- описывать реакции с помощью естественного (русского или родного) языка и языка химии;
- классифицировать химические реакции по числу и составу исходных веществ и продуктов реакции; тепловому эффекту; направлению протекания реакции; участию катализатора;
- использовать таблицу растворимости для определения возможности протекания реакций обмена; электрохимический ряд напряжений (активности) металлов для определения возможности протекания реакций между металлами и водными раствора-
- ми кислот и солей;
- наблюдать и описывать признаки и условия течения химических реакций, делать выводы на основании анализа наблюдений за экспериментом;
- проводить расчеты по химическим уравнениям на нахождение количества, массы или объема продукта реакции по количеству, массе или объему исходного вещества; с использованием понятия «доля», когда исходное вещество дано в виде раствора с заданной массовой долей растворенного вещества или содержит определенную долю примесей.

Метапредметные результаты обучения

Учащийся должен уметь:

- составлять на основе текста схемы, в том числе с применением средств ИКТ;
- самостоятельно оформлять отчет, включающий описание эксперимента, его результатов, выводов;
- использовать такой вид мысленного (идеального) моделирования, как знаковое моделирование (на примере уравнений химических реакций);
- различать объем и содержание понятий; различать родовое и видовое понятия; осуществлять родовидовое определение понятий.

Тема 5. Практикум 1. Простейшие операции с веществом (3 ч)

- 1. Правила техники безопасности при работе в химическом кабинете. Приемы обращения с лабораторным оборудованием и нагревательными приборами
- 2. Признаки химических реакций.
- 3. Приготовление раствора сахара и расчет его массовой доли в растворе.

Предметные результаты обучения

Учащийся должен уметь:

- обращаться с лабораторным оборудованием и нагревательными приборами в соответствии с правилами техники безопасности;
- выполнять простейшие приемы работы с лабораторным оборудованием: лабораторным штативом; спиртовкой;
- наблюдать за свойствами веществ и явлениями, происходящими с веществами;
- описывать химический эксперимент с помощью естественного (русского или родного) языка и языка химии;
- делать выводы по результатам проведенного эксперимента;
- готовить растворы с определенной массовой долей растворенного вещества;
- приготовить раствор и рассчитать массовую долю растворенного в нем вещества.

Метапредметные результаты обучения

- Учащийся должен уметь:
- самостоятельно использовать опосредованное наблюдение.

Тема 6. Растворение. Растворы. Свойства растворов электролитов (18 ч) (17ч., уменьшение на 1 час в связи с продлением осенних каникул)

Растворение как физико-химический процесс. Растворимость. Типы растворов. Электролитическая диссоциация. Основные положения теории электролитической диссоциации. Ионные уравнения реакций. Кислоты: классификация и свойства в свете. Основания: классификация и свойства в свете ТЭД. Оксиды: классификация и свойства. Соли: классификация и свойства в свете ТЭД. Генетическая связь между классами неорганических веществ.

Контрольная работа №4 «Растворение. Растворы. Свойства растворов электролитов»

Классификация химических реакций. Окислительно-восстановительные реакции. Свойства изученных классов веществ в свете окислительно-восстановительных реакций.

Демонстрации.

- 8. Испытание веществ и их растворов на электропроводность,
- 9. Зависимость электропроводности уксусной кислоты от концентрации.
- 10. Движение окрашенных ионов в электрическом поле.
- 11. Взаимодействие цинка с серой, соляной кислотой, хлоридом меди (II).
- 12. Горение магния.
- 13. Взаимодействие хлорной и сероводородной воды.

Лабораторные опыты.

- 18. Взаимодействие растворов хлорида натрия и нитрата серебра.
- 19. Получение нерастворимого гидроксида и взаимодействие его с кислотами.
- 20. Взаимодействие кислот с основаниями.
- 21. Взаимодействие кислот с оксидами металлов.
- 22. Взаимодействие кислот с металлами.
- 23. Взаимолействие кислот с солями.
- 24. Взаимодействие шелочей с кислотами.
- 25. Взаимодействие щелочей с оксидами неметаллов. Взаимодействие щелочей с солями.
- 27. Получение и свойства нерастворимых оснований.
- 28. Взаимодействие основных оксидов с кислотами.
- 29. Взаимодействие основных оксидов с водой.
- 30. Взаимодействие кислотных оксидов со щелочами.
- 31. Взаимодействие кислотных оксидов с водой.
- 32. Взаимодействие солей с кислотами.
- 33. Взаимодействие солей со щелочами.
- 34. Взаимодействие солей с солями.
- 35. Взаимодействие растворов солей с металлами.

Предметные результаты обучения

- использовать при характеристике превращений веществ следующих понятий: «раствор», «электролитическая диссоциация», «электролиты», «неэлектролиты», «степень диссоциации», «сильные электролиты», «слабые электролиты», «катионы», «анионы», «кислоты», «основания», «соли», «ионные реакции», «несолеобразующие оксиды», «солеобразующие оксиды», «основные оксиды», «кислотные оксиды», «средние соли», «кислые соли», «основные соли», «генетический ряд», «окислительно-восстановительные реакции», «окислитель», «восстановитель», «окисление», «восстановление»;
- описывать растворение как физико-химический процесс; иллюстрировать примерами основные положения теории электролитической диссоциации; генетическую взаимосвязь между веществами (простое вещество оксид гидроксид соль);
- характеризовать общие химические свойства кислотных II основных оксидов, кислот, оснований и солей с позиций теории электролитической диссоциации; сущность электролитической диссоциации веществ с ковалентной полярной и ионной химической связью; сущность окислительно-восстановительных реакций;
- приводить примеры реакций, подтверждающих химические свойства кислотных и основных оксидов, кислот, оснований н солей; существование взаимосвязи между основными классами неорганических веществ;
- классифицировать химические реакции по «изменению степеней окисления элементов, образующих реагирующие вещества»;
- составлять уравнения электролитической диссоциации кисло г, оснований и солей; молекулярные, полные и сокращенные ионные уравнения реакций с участием электролитов; уравнения окислительно-восстановительных реакций, используя метод электронного баланса; уравнения реакций, соответствующих последовательности («цепочке») превращений неорганических веществ различных классов;
- определять окислитель и восстановитель, окисление и восстановление в окислительно-восстановительных реакциях;
- устанавливать причинно-следственные связи: класс вещества химические свойства вещества;
- наблюдать и описывать реакции между электролитами с помощью естественного (русского или родного) языка и языка химии;
- проводить опыты, подтверждающие химические свойства основных классов неорганических веществ.

Метапредметные результаты обучения

Учащийся должен уметь:

- делать пометки, выписки, цитирование текста;
- составлять доклад;
- составлять на основе текста графики, в том числе с применением средств ИКТ;
- владеть таким видом изложения текста, как рассуждение; использовать такой вид мысленного (идеального) моделирования, как знаковое моделирование (на примере уравнений реакций диссоциации, ионных уравнений реакций, реакций окисления-восстановления);
- различать компоненты доказательства (тезис, аргументы и форму доказательства);
- осуществлять прямое индуктивное доказательство.

Тема 7. Практикум 2. Свойства растворов электролитов (14)

4. Решение экспериментальных задач.

Предметные результаты обучения

Учащийся должен уметь:

- обращаться с лабораторным оборудованием и нагревательными приборами в соответствии с правилами техники безопасности;
- выполнять простейшие приемы обращения с лабораторным оборудованием: лабораторным штативом, спиртовкой;
- наблюдать за свойствами веществ и явлениями, происходящими с веществами;
- описывать химический эксперимент с помощью естественного (русского или родного) языка и языка химии;
- делать выводы по результатам проведенного эксперимента.

Метапредметные результаты обучения

Учащийся должен уметь:

- определять, исходя из учебной задачи, необходимость непосредственного или опосредованного наблюдения;
- самостоятельно формировать программу эксперимента.

Резерв (взят 1 час в связи с продлением осенних каникул)

9 КЛАСС (2 ч в неделю)

Введение. Общая характеристика химических элементов и химических реакций. Периодический закон и Периодическая система химических элементов Д. И. Менделеева (10 ч)

Характеристика химического элемента на основании его положения в Периодической системе Д. И. Менделеева. Амфотерные оксиды и гидроксиды . Периодический закон и Периодическая система Д. И. Менделеева в свете учения о строении атома. Химическая организация живой и неживой природы. Классификация химических реакций по различным основаниям. Понятие о скорости химической реакции. Катализаторы

Контрольная №1 «Введение. Общая характеристика химических элементов и химических реакций. Периодический закон и Периодическая система химических элементов Д. И. Менделеева»

Демонстрации.

- 1. Различные формы таблицы Д. И. Менделеева.
- 2. Модели атомов элементов 1—3-го периодов.
- 3. Модель строения земного шара (поперечный разрез).
- 4. Зависимость скорости химической реакции от природы реагирующих веществ.
- 5. Зависимость скорости химической реакции от концентрации реагирующих веществ.
- 6. Зависимость скорости химической реакции от площади соприкосновения реагирующих веществ («кипящий слой»).
- 7. Зависимость скорости химической реакции от температуры реагирующих веществ.
- 8. Гомогенный и гетерогенный катализы.
- 9. Ферментативный катализ.
- 10. Ингибирование.

Лабораторные опыты.

- 1. Получение гидроксида цинка и исследование его свойств.
- 2. Моделирование построения Периодической системы химических элементов Д. И. Менделеева.
- 3. Замещение железом меди в растворе сульфата меди (II).
- 4. Зависимость скорости химической реакции от природы реагирующих веществ на примере взаимодействия кислот с металлами.
- 5. Зависимость скорости химической реакции от концентрации реагирующих веществ на примере взаимодействия цинка с соляной кислотой различной концентрации.
- 6. Зависимость скорости химической реакции от площади соприкосновения реагирующих веществ.
- 7. Моделирование «кипящего слоя».
- 8. Зависимость скорости химической реакции от температуры реагирующих веществ на примере взаимодействия оксида меди (II) с раствором серной кислоты различной температуры.
- 9. Разложение пероксида водорода с помощью оксида марганца (IV) и каталазы.
- 10. Обнаружение каталазы в некоторых пищевых продуктах.
- 11. Ингибирование взаимодействия кислот с металлами уротропином.

Предметные результаты обучения

Учащийся должен уметь:

- использовать при характеристике превращений веществ понятия: «химическая реакция», «реакции соединения», «реакции
- разложения», «реакции обмена», «реакции замещения», «реакции нейтрализации», «экзотермические реакции», «эндотермические реакции», «обратимые реакции», «необратимые реакции», «окислительно-восстановительные реакции», «гомогенные реакции», «гетерогенные реакции», «каталитические реакции», «каталитические реакции», «каталитической реакции», «катализатор»;
- характеризовать химические элементы 1—3-го периодов по их положению в Периодической системе химических элементов Д. И. Менделеева: химический знак, порядковый номер, период, группа, подгруппа, относительная атомная масса, строение атома (заряд ядра, число протонов и нейтронов в ядре, общее число электронов, распределение электронов по электронным слоям, простое вещество, формула, название и тип высшего оксида и гидроксида, летучего водородного соединения (для неметаллов);
- характеризовать общие химические свойства амфотерных оксидов и гидроксидов;
- приводить примеры реакций, подтверждающих химические свойства амфотерных оксидов и гидроксидов;
- давать характеристику химических реакций по числу и составу исходных веществ и продуктов реакции; тепловому эффекту; направлению протекания реакции; изменению степеней окисления элементов; агрегатному состоянию исходных веществ; участию катализатора;
- объяснять и приводить примеры влияния некоторых факторов (природа реагирующих веществ, концентрация веществ, давление, температура, катализатор, поверхность соприкосновения реагирующих веществ) на скорость химических реакций;
- наблюдать и описывать уравнения реакций между веществами с помощью естественного (русского или родного) языка и языка химии;
- проводить опыты, подтверждающие химические свойства амфотерных оксидов и гидроксидов; зависимость скорости химической реакции от различных факторов (природа реагирующих веществ, концентрация веществ, давление, температура, катализатор, поверхность соприкосновения реагирующих веществ).

Метапредметные результаты обучения

Учащийся должен уметь:

- определять цель учебной деятельности с помощью учителя и самостоятельно, искать средства ее осуществления, работая по плану, сверять свои действия с целью и при необходимости исправлять ошибки с помощью учителя и самостоятельно; составлять аннотацию текста;
- создавать модели с выделением существенных характеристик объекта и представлением их в пространственно-графической или знаково-символической форме;
- определять виды классификации (естественную и искусственную);
- осуществлять прямое дедуктивное доказательство.

Тема 1. Металлы (14 ч)

Век медный, бронзовый, железный. Положение элементов- металлов в Периодической системе Д. И. Менделеева и особенности строения их атомов. Физические свойства металлов. Сплавы.

Химические свойства металлов. Металлы в природе. Общие способы их получения. Понятие о коррозии металлов

Общая характеристика элементов IA группы. Соединения щелочных металлов. Щелочноземельные металлы. Соединения щелочноземельных металлов. Алюминий и его соединения. Железо и его соединения.

Контрольная работа№2«Металлы»

Демонстрации.

- 11. Образцы щелочных и щелочноземельных металлов.
- 12. Образцы сплавов.
- 13. Взаимодействие натрия, лития и кальция с водой.
- 14. Взаимодействие натрия и магния с кислородом.
- 15. Взаимодействие металлов с неметаллами.
- 16. Получение гидроксидов железа (II) и (III).

Лабораторные опыты.

- 12. Взаимодействие растворов кислот и солей с металлами.
- 13. Ознакомление с рудами железа.
- 14. Окрашивание пламени солями щелочных металлов.
- 15. Взаимодействие кальция с водой.
- 16. Получение гидроксида кальция и исследование его свойств.
- 17. Получение гидроксида алюминия и исследование его свойств.
- 18. Взаимодействие железа с соляной кислотой.
- 19. Получение гидроксидов железа (II) и (III) и изучение их свойств.

Предметные результаты обучения

- использовать при характеристике металлов и их соединений понятия: «металлы», «ряд активности металлов», «щелочные металлы», «щелочноземельные металлы», использовать их при характеристике металлов;
- давать характеристику химических элементов-металлов (щелочных металлов, магния, кальция, алюминия, железа) по их положению в Периодической системе химических элементов Д. И. Менделеева (химический знак, порядковый номер, период, группа, подгруппа, относительная атомная масса, строение атома (заряд ядра, число протонов и нейтронов в ядре, общее число электронов, распределение электронов по электронным слоям), простое вещество, формула, название и тип высшего оксида и гидроксида);
- называть соединения металлов и составлять их формулы по названию;
- характеризовать строение, общие физические и химические свойства простых веществ-металлов;
- объяснять зависимость свойств (или предсказывать свойства) химических элементов-металлов (радиус, металлические свойства элементов, окислительно-восстановительные свойства элементов) и образуемых ими соединений (кислотно-основные свойства высших оксидов и гидроксидов, окислительно-восстановительные свойства) от положения в Периодической системе химических элементов Д. И. Менделеева;
- описывать общие химические свойства металлов с помощью естественного (русского или родного) языка и языка химии;
- составлять молекулярные уравнения реакций, характеризующих химические свойства металлов и их соединений, ^ также электронные уравнения процессов окисления-восстановления; уравнения электролитической диссоциации; молекулярные, полные и сокращенные ионные уравнения реакций с участием электролитов;
- устанавливать причинно-следственные связи между строением атома, химической связью, типом кристаллической решетки металлов и их соединений, их общими физическими и химическими свойствами;
- описывать химические свойства щелочных и щелочноземельных металлов, а также алюминия и железа и их соединений с помощью естественного (русского или родного) языка и языка химии;
- выполнять, наблюдать и описывать химический эксперимент по распознаванию важнейших катионов металлов, гидроксид ионов;
- экспериментально исследовать свойства металлов и их соединений, решать экспериментальные задачи по теме «Металлы»;
- описывать химический эксперимент с помощью естественного (русского или родного) языка и языка химии;

• проводить расчеты по химическим формулам и уравнениям реакций, протекающих с участием металлов и их соединений.

Метапредметные результаты обучения

Учащийся должен уметь:

- работать по составленному плану, используя наряду с основными и дополнительные средства (справочную литературу, сложные приборы, средства ИКТ);
- с помощью учителя отбирать для решения учебных задач необходимые словари, энциклопедии, справочники, электронные диски;
- сопоставлять и отбирать информацию, полученную из различных источников (словари, энциклопедии, справочники, электронные диски, сеть Интернет);
- представлять информацию в виде таблиц, схем, опорного конспекта, в том числе с применением средств ИКТ;
- оформлять свои мысли в устной и письменной речи с учетом своих учебных и жизненных речевых ситуаций, в том числе с применением средств ИКТ;
- составлять рецензию на текст; осуществлять доказательство от противного.

Тема 2. Практикум 1. Свойства металлов и их соединений (2 ч)

1. Решение экспериментальных задач на распознавание и получение соединений металлов.

Предметные результаты обучения

Учащийся должен уметь:

- обращаться с лабораторным оборудованием и нагревательными приборами в соответствии с правилами техники безопасности;
- наблюдать за свойствами металлов и их соединений и явлениями, происходящими с ними;
- описывать химический эксперимент с помощью естествен- . ного (русского или родного) языка и языка химии;
- делать выводы по результатам проведенного эксперимента.

Метапредметные результаты обучения

Учащийся должен уметь:

• определять, исходя из учебной задачи, необходимость использования наблюдения или эксперимента.

Тема 3. Неметаллы (25 ч)

Общая характеристика неметаллов. Общие химические свойства неметаллов. Неметаллы в природе и способы их получения. Водород. Вода. Галогены. Соединения галогенов. Кислород. Сера, ее физические и химические свойства. Соединения серы. Серная кислота как электролит и ее соли. Серная кислота как окислитель. Получение и применение серной кислоты. Азот и его свойств. Аммиак и его свойства. Соли аммония. Оксиды азота. Азотная кислота как электролит, ее применение. Азотная кислота как окислитель, ее получение. Фосфор. Соединения фосфора. Понятие о фосфорных удобрениях. Углерод

Оксиды углерода. Угольная кислота и ее соли. Жесткость воды и способы ее устранения. Кремний. Соединения кремния. Силикатная промышленность.

Контрольная работа №3 «Неметаллы»

Демонстрации.

- 17. Образцы галогенов простых веществ.
- 18. Взаимодействие галогенов с натрием, с алюминием.
- 19. Вытеснение хлором брома или йода из растворов их солей.
- 20. Взаимодействие серы с металлами, водородом и кислородом.
- 21. Взаимодействие концентрированной азотной кислоты с медью.
- 22. Поглощение углем растворенных веществ или газов.
- 23. Восстановление меди из ее оксида углем.
- 24. Образцы природных соединений хлора, серы, фосфора, углерода, кремния.
- 25. Образцы важнейших для народного хозяйства сульфатов, нитратов, карбонатов, фосфатов.
- 26. Образцы стекла, керамики, цемента.

Лабораторные опыты.

- 20. Получение и распознавание водорода.
- 21. Исследование поверхностного натяжения воды.
- 22. Растворение перманганата калия или медного купороса в воде.
- 23. Гидратация обезвоженного сульфата меди (II).

- 24. Изготовление гипсового отпечатка.
- 25. Ознакомление с коллекцией бытовых фильтров.
- 26. Ознакомление с составом минеральной воды.
- 27. Качественная реакция на галогенид-ионы.
- 28. Получение и распознавание кислорода.
- 29. Горение серы на воздухе и в кислороде.
- 30. Свойства разбавленной серной кислоты.
- 31. Изучение свойств аммиака.
- 32. Распознавание солей аммония.
- 33. Свойства разбавленной азотной кислоты.
- 34. Взаимодействие концентрированной азотной кислоты с медью.
- 35. Горение фосфора на воздухе и в кислороде.
- 36. Распознавание фосфатов.
- 37. Горение угля в кислороде.
- 38. Получение угольной кислоты и изучение ее свойств.
- 39. Переход карбонатов в гидрокарбонаты.
- 40. Разложение гидрокарбоната натрия.
- 41. Получение кремневой кислоты и изучение ее свойств.

Предметные результаты обучения

- использовать при характеристике металлов и их соединений понятия: «неметаллы», «галогены», «аллотропные видоизменения», «жесткость воды», «временная жесткость воды», «постоянная жесткость воды», «общая жесткость воды»;
- давать характеристику химических элементов-неметаллов (водорода, галогенов, кислорода, серы, азота, фосфора, углерода, кремния) по их положению в Периодической системе химических элементов Д. И. Менделеева (химический знак, порядковый номер, период, группа, подгруппа, относительная атомная масса, строение атома (заряд ядра, число протонов и нейтронов в ядре, общее число электронов, распределение электронов по электронным слоям), простое вещество, формула, название и тип высшего оксида и гидроксида, формула и характер летучего водородного соединения);
- называть соединения неметаллов и составлять их формулы по названию;
- характеризовать строение, общие физические и химические свойства простых веществ-неметаллов;
- объяснять зависимость свойств (или предсказывать свойства) химических элементов-неметаллов (радиус, неметаллические свойства элементов, окислительно-восстановительные свойства элементов) и образуемых ими соединений (кислотно-основные свойства высших оксидов и гидроксидов, летучих водородных соединений, окислительно-восстановительные свойства) от положения в Периодической системе химических элементов Д. И. Менделеева;
- описывать общие химические свойства неметаллов с помощью естественного (русского или родного) языка и языка химии;
- составлять молекулярные уравнения реакций, характеризующих химические свойства неметаллов и их соединений, а также электронные уравнения процессов окисления-восстановления; уравнения электролитической диссоциации;
- молекулярные, полные и сокращенные ионные уравнения реакций с участием электролитов;
- устанавливать причинно-следственные связи между строением атома, химической связью, типом кристаллической решетки неметаллов и их соединений, их общими физическими и химическими свойствами;
- описывать химические свойства водорода, галогенов, кислорода, серы, азота, фосфора, графита, алмаза, кремния и их соединений с помощью естественного (русского или родного) языка и языка химии;
- описывать способы устранения жесткости воды и выполнять соответствующий им химический эксперимент;
- выполнять, наблюдать и описывать химический эксперимент по распознаванию ионов водорода и аммония, сульфат-, карбонат-, силикат-, фосфат-, хлорид-, бромид-, иодид-ионов;
- экспериментально исследовать свойства металлов и их соединений, решать экспериментальные задачи по теме «Неметаллы»;
- описывать химический эксперимент с помощью естественного (русского или родного) языка и языка химии;
- проводить расчеты по химическим формулам и уравнениям реакций, протекающих с участием

неметаллов и их соединений.

Метапредметные результаты обучения

Учащийся должен уметь:

- организовывать учебное взаимодействие в группе (распределять роли, договариваться друг с другом и т. д.);
- предвидеть (прогнозировать) последствия коллективных решений;
- понимать причины своего неуспеха и находить способы выхода из этой ситуации;
- в диалоге с учителем учиться вырабатывать критерии оценки и определять степень успешности выполнения своей работы и работы всех, исходя из имеющихся критериев, совершенствовать критерии оценки и пользоваться ими в ходе оценки и самооценки; отстаивать свою точку зрения, аргументируя ее; подтверждать аргументы фактами; критично относиться к своему мнению;
- слушать других, пытаться принимать другую точку зрения, быть готовым изменить свою точку зрения;
- составлять реферат по определенной форме;
- осуществлять косвенное разделительное доказательство.

Тема 4. Практикум 2. Свойства соединений неметаллов (3 ч)

- 1. Решение экспериментальных задач по теме «Подгруппа галогенов».
- 2. Решение экспериментальных задач по теме «Подгруппа кислорода».
- 3. Получение, собирание и распознавание газов.

Предметные результаты обучения

Учащийся должен уметь:

- обращаться с лабораторным оборудованием и нагревательными приборами в соответствии с правилами техники безопасности;
- наблюдать за свойствами неметаллов и их соединений и явлениями, происходящими с ними;
- описывать химический эксперимент с помощью естественного (русского или родного) языка и языка химии:
- делать выводы по результатам проведенного эксперимента.

Метапредметные результаты обучения

Учащийся должен уметь:

• определять, исходя из учебной задачи, необходимость использования наблюдения или эксперимента.

Тема 5. Обобщение знаний по химии за курс основной школы. Подготовка к государственной итоговой аттестации (ОГЭ) (104)

Периодический закон и Периодическая система Д. И. Менделеева в свете теории строения атома Виды химических связей и типы кристаллических решеток. Взаимосвязь строения и свойств вешеств.

Классификация химических реакций по различным признакам. Скорость химических реакций. Диссоциация электролитов в водных растворах. Ионные уравнения реакции. Окислительновосстановительные реакции. Классификация и свойства неорганических веществ. Тренинг-тестирование по вариантам ГИА прошлых лет и демоверсии

Личностные результаты обучения

Учашийся должен:

знать и понимать:

- основные исторические события, связанные с развитием химии и общества; достижения в области химии и культурные традиции (в частности, научные традиции) своей страны;
- общемировые достижения в области химии; основные принципы и правила отношения к природе; основы здорового образа жизни и здоровьесберегающих технологий;
- правила поведения в чрезвычайных ситуациях, связанных с воздействием различных веществ;
- основные права и обязанности гражданина (в том числе учащегося), связанные с личностным, профессиональным и жизненным самоопределением; социальную значимость и содержание профессий, связанных с химией;

испытывать:

- чувство гордости за российскую химическую науку и уважение к истории ее развития;
- уважение и принятие достижений химии в мире;
- любовь к природе;

- уважение к окружающим (учащимся, учителям, родителям и др.) уметь слушать и слышать партнера, признавать право каждого на собственное мнение, принимать решения с учетом позиций всех участников; чувство прекрасного и эстетических чувств на основе знакомства с миром веществ и их превращений;
- самоуважение и эмоционально-положительное отношение к себе;

признавать:

- ценность здоровья (своего и других людей);
- необходимость самовыражения, самореализации, социального признания;

осознавать:

- готовность (или неготовность) к самостоятельным поступкам и действиям, ответственность за их результаты;
- готовность (или неготовность) открыто выражать и отстаивать свою позицию и критично относиться к своим поступкам;

проявлять:

- экологическое сознание; доброжелательность, доверие и внимательность к людям, готовность к сотрудничеству и дружбе, оказанию помощи тем, кто в ней нуждается;
- обобщенный, устойчивый и избирательный познавательный интерес, инициативу и любознательность в изучении мира веществ и реакций;
- целеустремленность и настойчивость в достижении целей, готовность к преодолению трудностей; убежденность в возможности познания природы, необходимости разумного использования достижений науки и технологий для развития общества;

уметь:

- устанавливать связь между целью изучения химии и тем, для чего она осуществляется (мотивами);
- выполнять корригирующую самооценку, заключающуюся в контроле за процессом изучения химии и внесении необходимых коррективов, соответствующих этапам и способам изучения курса химии;
- выполнять ретроспективную самооценку, заключающуюся в оценке процесса и результата изучения курса химии основной школы, подведении итогов на основе соотнесения целей и результатов;
- строить жизненные и профессиональные планы с учетом конкретных социально-исторических, политических и экономических условий;
- осознавать собственные ценности и соответствие их принимаемым в жизни решениям;
- вести диалог на основе равноправных отношений и взаимного уважения;
- выделять нравственный аспект поведения и соотносить поступки (свои и других людей) и события с принятыми этическими нормами; в пределах своих возможностей противодействовать действиям и влияниям, представляющим угрозу жизни, здоровью и безопасности личности и общества.

Резерв – 4 ч (2ч., уменьшение на 2 часа в связи с продлением осенних каникул)

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

8 класс							
	Количест	в том числе:					
Содержание программы	во часов	лаборат орные опыты	практические работы	контрольные работы			
Введение	4	2					
Тема 1. Атомы химических элементов	9	3		1			
Тема 2. Простые вещества	6	2		1			
Тема 3. Соединения химических элементов	14	8		1			
Тема 4. Изменения, происходящие с веществами	12	2		1			
Тема 5. Практикум 1. Простейшие операции с веществом	3		3				
Тема 6. Растворение. Растворы. Свойства растворов электролитов	17	17		1			

Тема 7. Практикум 2.	1		1					
Свойства растворов электролитов (14)								
Резерв								
	66	34	4	5				
9 класс								
Введение. Общая характеристика химических элементов и химических реакций. Периодический закон и Периодическая система химических элементов Д. И. Менделеева	10	11		1				
Тема 1. Металлы	14	8		1				
Тема 2. Практикум 1. Свойства металлов и их соединений	2		2					
Тема 3. Неметаллы	25	22		1				
Тема 4. Практикум 2. Свойства соединений неметаллов	3		3					
Тема 5. Обобщение знаний по химии за курс основной школы. Подготовка к государственной итоговой аттестации	10			1				
Резерв	2							
	66	41	5	4				